Matrix Eigensystem Tutorial
For Parallel Computation

High Performance Computing Center (HPC)
http://www.hpc.unm.edu
Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Slide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main purpose of this tutorial</td>
<td>5</td>
</tr>
<tr>
<td>The assumptions made about the users</td>
<td>6</td>
</tr>
<tr>
<td>Important points to be noted</td>
<td>7</td>
</tr>
<tr>
<td>Survey of available parallel software</td>
<td>8</td>
</tr>
<tr>
<td>Organization of ScaLAPACK</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>Description of P_ARPACK</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Commercially available parallel libraries (slide to be provided)</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>References to ScaLAPACK</td>
<td>9</td>
</tr>
<tr>
<td>Brief definition of the matrix eigensystem problem</td>
<td>10</td>
</tr>
<tr>
<td>Why you need to study this tutorial before calling ScaLAPACK routines</td>
<td>11</td>
</tr>
<tr>
<td>Generic steps in solving the eigenvalue problem</td>
<td>12</td>
</tr>
<tr>
<td>Data-type and matrix-type designators in the ScaLAPACK routines</td>
<td>13</td>
</tr>
<tr>
<td>Classification of ScaLAPACK routines</td>
<td>14</td>
</tr>
</tbody>
</table>
Outline Continued

Topic

ScaLAPACK generic naming conventions for Drivers and Computational routines 15
ScaLAPACK generic naming conventions for Auxiliary routines 16
Naming convention for the Driver routines 17
Naming convention for the Computational routines 18-19
How to pick the appropriate Driver routines to solve a specific eigensystem in ScaLAPACK 20-21
How to pick the appropriate Computational routines to solve a specific eigensystem 22-24
The theory of computing eigenvalues/eigenvectors of non-symmetric-complex matrices 25
 Converting the theory to code 26-29
Sample code to calculate the right-eigenvectors in LAPACK 30
Sample code to calculate the right-eigenvectors in ScaLAPACK ?
Computing the workspace for ScaLAPACK routine ?
How distribute the data over the processors ?
How to read program data from a file ?

5/21/2003
Outline Continued

<table>
<thead>
<tr>
<th>Topic</th>
<th>Slide</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to test correctness of your eigensystem computation</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>A complete working sample code</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>How to create a makefile on Linux</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>How to submit and run a parallel job using PBS on Linux</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>Exercises</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>Other Areas</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>Where eigensystems are used</td>
<td>slide to be provided</td>
</tr>
<tr>
<td>References</td>
<td>slide to be provided</td>
</tr>
</tbody>
</table>
Main Purpose Of This Tutorial

- Short and concise complement to the ScaLAPACK Users’ Guide and Tutorial and other package documentation
- To explain the problems a user encounters using ScaLAPACK on a typical Linux cluster
- To provide solutions for the typical problems
The Assumptions Made About The Users Of This Tutorial

- The parallel eigensystem software is installed in an appropriate location in the machine and user needs to be aware of that location
- Users are assumed to be familiar with:
 - The definition of the matrix eigensystem problem
 - Using an editor
 - The Fortran programming language
 - Program compilation and makefiles
 - Debugging a parallel program
 - Setting the necessary environment variables on a specific machine to submit and run a parallel program
Important Points To Be Noted

- The application code should be compiled with the same compiler that the parallel eigensystem library is built with. Otherwise, your driver code may not compile and/or link correctly, or may not produce the correct results.

- Later slides will be provided on the topics of:
 - How to create a Makefile (Specific to the Linux)
 - How to submit and run a parallel job on Linux system using PBS
Organization Of ScaLAPACK

- Organization
 - A library of parallel math procedures

- Components of ScaLAPACK (dependency graph)
 - PBLAS: Parallel BLAS (Basic Linear Algebra Subroutines)
 - BLACS: Parallel Communication
 - LAPACK: Serial linear algebra computation
 - BLAS: Serial BLAS

- Note:
 - The compilation and linking of the users’ program must provide access to these libraries
 - In the linking process, the more general libraries (highest in the dependency graph) should be first with the BLAS last
References To ScaLAPACK

- Parallel Mathematical Libraries (http://webct.ncsa.uiuc.edu:8900)
 - Describes the structure of ScaLAPACK
 - Provides a guide for using ScaLAPACK routines
 - Highlights processor grid creation and ScaLAPACK data distribution; this tutorial assumes knowledge of this topic
 - Provides a working example for matrix-vector multiplication, using ScaLAPACK
- ScaLAPACK Tutorial (http://www.netlib.org/scalapack/tutorial)
 - Highlights structure, design, content, performance of ScaLAPACK and other libraries (EISPACK, LINPACK, LAPACK, BLAS, BLACS, PBLAS, ATLAS)
 - Provides examples of calls to ScaLAPACK and other library routines
- ScaLAPACK Example Programs (http://www.netlib.org/scalapack/examples)
 - Provides working examples for solving symmetric, Hermitian, generalized symmetric, and generalized Hermitian eigenproblems
Brief Definition Of Eigensystem

- Right eigensystem
 - To compute the non-zero right eigenvector \((x)\) of matrix \(A\) corresponding to the eigenvalue \(?\), satisfying the equation \(A \cdot x = ? \cdot x\)

- Left eigensystem
 - To compute the non-zero left eigenvector \((x)\) of matrix \(A\) corresponding to the eigenvalue \(?\), satisfying the equation \(x^T \cdot A = ? \cdot x^T\)
Why You Need To Study This Tutorial Before Calling ScaLAPACK Routines

- Calling an inappropriate routine for your eigenproblem may create very inaccurate results
 - For example, don’t solve the symmetric eigenproblem with the general matrix eigenproblem routines

- Some important concerns:
 - The type of input matrix A (complex, hermitian, symmetric, banded, dense, sparse, ...)
 - The data storage and distribution (determined by the user or by the library)
 - Picking the correct algorithm for the following cases
 - Standard problem (Ax = ?x)
 - Generalized eigensystems (Ax = ?Bx, ABx = ?x)
 - Symmetric and non-symmetric eigensystem problems
 - Singular values and pseudo-inverses
 - Least squares problem (may be)
Generic Steps In Solving The Eigenvalue Problem

- Reduce the original matrix to a condensed form by similarity transformations
 - Kinds of condensed form:
 - Reduce a symmetric matrix to tridiagonal form
 - Reduce a non-symmetric matrix to Hessenberg form, and the Hessenberg form to the Schur form
 - Reduce a rectangular matrix to bidiagonal form to compute a singular value decomposition
 - Compute the eigensystem of the condensed form
- Transform the eigenvectors of the condensed form back to the original matrix eigenvectors. The eigenvalues of the condensed form are the same as the eigenvalues of the original matrix
Data-type And Matrix-type Designators In The ScaLAPACK Routines

<table>
<thead>
<tr>
<th>Data-type</th>
<th>Matrix-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: Real (Single precision)</td>
<td>SY: SYmmetric (real)</td>
</tr>
<tr>
<td>D: Double precision</td>
<td>HE: HErmitian (complex)</td>
</tr>
<tr>
<td>C: Complex</td>
<td>OR: ORthogonal (real)</td>
</tr>
<tr>
<td>Z: Double complex (or Complex*16)</td>
<td>UN: UNitary (complex)</td>
</tr>
</tbody>
</table>

Note: The list is shown for the Fortran language and Fortran is not case sensitive.

TR: Tridiagonal
ST: Symmetric Tridiagonal
PO: POSitive definite
Classification of ScaLAPACK Routines

- Routines in ScaLAPACK are classified as: **Driver**, **Computational**, and **Auxiliary** routines.

- Driver routines:
 - Simple Driver
 - A single driver computes all the eigenvalues and eigenvectors of a matrix
 - Expert Driver
 - An expert driver computes all or a selected subset of the eigenvalues and eigenvectors of a matrix

- Computational routines
 - More than one routine is necessary to complete the eigensystem computations

- Auxiliary routines
 - Compute certain subtask or common low-level computations (e.g., max, min, abs routines)
SCALAPACK Generic Naming Conventions For Drivers And Computational Routines

- SCALAPACK naming system is essentially the same as LAPACK with P added in the beginning of the name (P stands for parallel)
- The general form of names of Drivers and Computational routines are as follows (includes at most 7 characters with only 2 ZZZ characters for the Driver routines)

Pxyyzzzz

Symbols represent:

- P: Parallel
- x: Datatype designator such as S: real, D: double, ...
- yy: Matrix type designator such as: GE: general, SY: symmetric, ..., or LA: auxiliary routine
- zzz: Computation type such as: EV: eigenvalues and eigenvectors

As an example, PSSYEV is the driver for the parallel (P) eigensystem solver for a single (S) precision symmetric (SY) matrix which finds all eigenvalues (E) and eigenvectors (V)
ScaLAPACK Generic Naming Convention
For Auxiliary Routines

- In the Auxiliary routines
 - A similar naming scheme as the previous slide except that YY is replaced with LA
 - Exceptions:
 - The non-blocked version of the blocked algorithms have the character 2 instead of a letter at the end (e.g., PSGETF2 is the unblocked version of PSGETRF)
 - A few routines which are regarded as extensions to BLAS have similar names to the BLAS routines
Naming Convention For The Driver Routines

Computational part (ZZZ) in Driver routine names:

- Simple Driver
 - ZZZ string is EV (EigenValues & eigenVectors)

- Expert Driver
 - Computes all or a selected subset of the eigenvalues and eigenvectors
 - ZZZ string is EVX
 - Computes the solution to the Generalized Symmetric Definite Eigenproblems
 - zzz string is with GVX
Naming Convention For The Computational Routines

- In the Computational routines:
 ZZZ is replaced with several acronyms depending on the matrix-type as described below

- Symmetric eigenproblem
 - Computes eigenvalues and eigenvectors of real-symmetric or complex-Hermitian matrix A
 - Steps in computation
 - When reducing A to tridiagonal form, the zzz string is TRD, meaning Tridiagonal ReDuction
 - When computing eigenvalues/eigenvectors of a tridiagonal matrix, the string zzz may be EIG, meaning computation of eigensystem
Naming Convention For The Computational Routines
Continued

- **Nonsymmetric Eigenproblems**
 - Compute eigenvalues/vectors of general matrix A
 - Steps in computation
 - When reducing matrix A to upper Hessenberg form, the string ZZZ is HRD
 - When reducing upper Hessenberg matrix to Schur form and computing eigenvalues of the Schur form, the string ZZZ is HQR
 - When computing eigenvectors of the Schur form and transforming them back to the eigenvectors of matrix A, the string ZZZ is EVC
 - **Note:** An explanation of an intermediate step and more guides are provided in succeeding sections

- **Generalized Symmetric Definite Eigenproblems**
 - Generalized Symmetric Definite Eigenproblems is defined in the succeeding sections
 - Steps in Computing eigenvalues/vectors of generalized eigenvalue problems
 - When reducing the problem to a standard symmetric eigenproblem, the string ZZZ is GST, meaning Generalized Symmetric definite Transformation
 - Compute eigenvalues/vectors with routines provided for symmetric eigenproblems
How To Pick The Appropriate Driver To Solve A Specific Eigensystem In ScaLAPACK

■ Driver routines
 - Solve a complete problem
 - Limited number of these routines are available
 - There is not a Driver routine for every problem
 - **Standard symmetric eigenvalue problem**
 - Solves $A z = \lambda z$ ($A = A^T$, A is real) for **symmetric eigensystem problem**
 - call $P x S Y E V / P x S Y E V X$ subroutines
 - P: Parallel, x: datatype (S, D), SY: Symmetric, EV: all eigenvalue/vector, X: Expert routine
 - Solves $A z = \lambda z$ ($A = A^H$, A is complex) for **Hermitian eigensystem problem**
 - call $P x H E E V / P x H E E V X$ subroutines
 - P: Parallel, x: datatype (C, Z), HE: Hermitian, EV: all eigenvalue/vector, X: Expert routine
How To Pick The Appropriate Driver Routines To Solve A Specific Eigensystem In ScaLAPACK Continued

- Generalized Symmetric Definite Eigenproblem
 - Solves $Ax = \lambda Bx$, $ABx = \lambda x$, $BAx = \lambda x$, where
 λ is real, A is SY/HE, B is symmetric positive definite
 - Use $P_{xyy}GVX$ Driver routine
 - P: Parallel, x: datatype(S,C,D,Z), yy: matrix-type
 (real-Symmetric (SY), complex-Hermitian (HE)), G: Generalized, V: EigenVector, X: Expert routine

- Nonsymmetric matrix
 - No expert routine is available
How To Pick The Appropriate Computational Routine For Eigensystem In ScaLAPACK

Computational Routines

Symmetric Eigenproblems

1. Compute eigenvalues/vectors of $Ax = \lambda x$, A is real-symmetric (SY) or complex-Hermitian (HE)
2. First, reduce A to a tridiagonal form T
 - The decomposition has the forms of $A = Q T Q^T$ or $A = Q T Q^H$
 - Use $PxSYTRD$ or $PxHETRD$ subroutine respectively
3. Second, compute eigenvalues/vectors of T with the following 3 possible subroutines:
 - To find the Eigenvalues/vectors via look-ahead QR algorithm, use $XSTEQR2$
 - To find the Eigenvalues of T via bisection, use $PxSTEBZ$ subroutine
 - To find the Eigenvectors of T by inverse iteration, use $PxSTEIN$
4. Third, to transform the eigenvectors of T back to eigenvectors of A, use $PxORMTR$ or $PxUNMTR$ subroutine, Multiply T (TRiangular) by ORthogonal or UNitary matrix Q

5/21/2003
How To Pick The Appropriate Computational Routines For Eigensystem In ScaLAPACK Continued

Nonsymmetric eigenproblems

- Compute all eigenvalues of \(\lambda \) and right eigenvectors \(v \) and/or left eigenvectors \(u \) in the following equations
 \[Av = \lambda v \] or \[u^H A = \lambda u^H \]

- First, reduce the general matrix \(A \) to upper Hessenberg form \(H \)
 \(A = Q H Q^T \) or \(A = Q H Q^H \)
 - Call PxGEHRD subroutine
 - P: Parallel, x: datatype (S,D,C,Z), GE: General, H: Hessenberg, RD: Reduced

- Second, call PxORMHR or PxUNMHR to generate the orthogonal/unitary matrix \(Q \)

- Third, reduce \(H \) to Schur form \(T \) \((H = S T S^T \) or \(H = S T S^H \)), where \(S \) represents the Schur vectors of \(H \)
 - Call auxiliary routine PxLAHQR, x: datatype (S,D,C,Z)

- Fourth, call PxTREVC to compute the eigenvectors of \(T \) and transform them back to the coordinate space of the original matrix \(A \), x: datatype (C,Z)
How To Pick The Appropriate Computational Routines For Eigensystem In ScaLAPACK Continued

Generalized Symmetric Definite Eigenproblems

- Compute the eigenvalues/vectors of $A \mathbf{z} = \lambda B \mathbf{z}$,
 $A\mathbf{Bz} = \lambda \mathbf{z}$, $B\mathbf{Az} = \lambda \mathbf{z}$, where A and B are real-symmetric/Complex-Hermitian, B is positive definite
- Reduce each problem to a standard symmetric eigenvalues problem, using a Cholesky factorization of B
- Given A and the factored B, use routine P_{xyyGST} to overwrite A with C representing the standard problem $C \mathbf{y} = \lambda \mathbf{y}$ with the same eigenvalues and related eigenvectors
 - P: Parallel, x: datatype (S,D,C,Z), yy: (SY, HE), G: Generalized
 ST: Symmetric definite Transformation
- Solve the standard form with one of the routines provided for the symmetric eigenproblem shown the previous (slide 21)
The process (theory): Only the process for the right eigenvectors is described. A similar discussion for the left eigenvector is provided in an Appendix to these slides.

\[A \mathbf{x} = \lambda \mathbf{x} \]

\(H \) is the Hessenberg form of \(A \) and \(Q \) is unitary:
\[A = QHQ^H \]

\(T \) is the Schur form of \(H \) and \(Z \) is a unitary:
\[H = ZTZ^H \]

Replace \(A \) and \(H \):

multiply by \((QZ)^{-1} \):

\[QZT^HQ^H \mathbf{x} = \lambda \mathbf{x} \]

\[T(QZ)^H \mathbf{x} = \lambda(QZ)^{-1} \mathbf{x} \] compare to \(TY = \lambda Y \) (\(Y \) is the right eigenvector of \(T \))

\[Y = (QZ)^H \mathbf{x} \Rightarrow \mathbf{x} = QZY \]

As a result, to compute \(\mathbf{x} \), we need to compute \(Y \) (the right eigenvector of \(T \)), and then multiply by the product of \(QZ \).

The complete description of the routines which implement the above theory is described in the following slides.
Converting The Theory Of Computing Eigenvalues/Eigenvectors
Of Non-symmetric-Complex Matrix To Code

- The essence of a sample code is provided in slide (??).
- A complete working sample code is provided in slide (??).
- **STEP 1:** Call `zgehrd` subroutine to reduce the input matrix A to Hessenberg form ($A = QHQ^H$)
 - The Hessenberg form (H) is stored in the upper part of the input matrix A. Part of the unitary matrix Q is stored below the subdiagonal of A. The rest of Q is stored in the vector TAU.

\[
\begin{pmatrix}
A
\end{pmatrix} \xrightarrow{\text{zgehrd}} \begin{pmatrix}
H \\
Q
\end{pmatrix}
\]
STEP 2: Call the subroutine `zunghr` to generate unitary matrix Q from the encoding of Q which is computed in the previous routine (`zgehrd`) and was stored in A and TAU.

- The input matrix A is overwritten by this routine with the unitary matrix Q (The name Q is used instead of A in the sample code).
Converting The Theory Of Computing Eigenvalues/Eigenvectors Of Non-symmetric-Complex Matrix To Code Continued

STEP 3: Call the subroutine `zhseqr` to perform the following 3 operations:

- Compute eigenvalues of upper Hessenberg matrix, which was computed by `zgehrd` and was stored in the upper part of matrix A (or H in the sample code)
 - Store the eigenvalues in array W
- Compute Schur form (upper triangular form) of matrix H (Hessenberg form)
 - Store the upper triangular form in matrix H
- Compute the product of QZ (the unitary matrix Q was generated by `zunghr`), and Z, the unitary matrix that transform H to the upper triangular Schur form
 - Store the product QZ in matrix Z

Note: The eigenvalues of the input matrix A, the Hessenberg form of A, and the Schur form of A are same because these matrices are similar (in the mathematical sense).
Converting The Theory Of Computing
Eigenvalues/Eigenvectors Of Non-symmetric-Complex Matrix
To Code Continued

STEP 4: Call `ztrevc` subroutine to perform 2 tasks:

- Compute the eigenvectors of Schur form which was stored in matrix H by the previous subroutine, `zhseqr`
- Transform these eigenvectors back to the space of original matrix A
 - Store the eigenvectors of the original matrix in matrix VR (for right eigenvectors)
Sample Code To Calculate The Right-Eigenvectors in LAPACK

! A is a non-Hermitian-complex input matrix

call ZGEHRD(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
H = A
Q = A
call ZUNGHR(N, ILO, IHI, Q, LDA, TAU, WORK, LWORK, INFO)
call ZHSEQR('S', 'V', N, ILO, IHI, H, LDA, W, Q, LDA, WORK, LWORK, INFO)
VR = Q
call ZTREVC('R', 'B', SELECT, N, H, LDA, VL, LDA, VR, LDA, MM, M, WORK, RWORK, INFO)
Left Eigenvectors Of Non-symmetric-complex Matrix

The left eigenvector computation is slight modification of the computation for right eigenvector as follows

\[x^H A = ? x^H \]

The matrix \(H \) is the Hessenberg form of \(A \) and \(Q \) is unitary:

\[A = QHQ^H \]

The matrix \(T \) is the upper triangular Schur form of \(H \) and \(Z \) is a unitary:

\[H = ZTZ^H \]

Replace \(A \) and \(H \):

Right multiply by \((QZ) \):

\[x^H QZTZ^H QH = ? x^H \]

\[x^H QZT = ? x^H (QZ) \]

and compare to \(Y^H T = ? Y^H \)

\[Y^H = x^H QZ \Rightarrow x^H = Y^H Q^H Z^H \] or \(x = QZY \)

As a result, to compute \(x \), need to compute \(Y \) (left eigenvector of \(T \)), and then multiply by the product of \(QZ \)

The complete description of the subroutines which implement the above theory is described in the following slides