Workshop On Scientific Problem Solving
In Fortran 90/95 — Parameterized Types
And Floating Point Issues

Spring, 1999
Richard C. Allen, SNL
Paul M. Alsing, UNM/AHPCC
Andrew C. Pineda, UNM/AHPCC
Brian T. Smith, UNM/AHPCC/CS
Topics To Be Covered

Parameterized types
- What is it and why have it?
- General mechanism in Fortran -- kinds of a type
- For non-numeric types
 - logical and character types -- very simple

For numeric type (integer, real, complex)
- Type declarations
- Constants
- Models For The Implementation
- Inquiries about the model used
- Expressions with mixed types and kinds
Topics To Be Covered Continued

Floating Point Issues

- Specifying minimum precision for an application
- Porting codes
- Codes that adapt to their executing range and precision
- Manipulation of parts of the floating point representation
 - Efficient argument reduction (e.g. square root function)
Variables or constants

- a variable
 - may be of any type and kind
 - is an identifier that is declared in a type statement
 - is given a value initially or during execution
 - may change its value during execution
 - may be a scalar or an array
Examples of Variables

real X
real :: A = -huge(X) ! Given a value initially

read *, A

X = abs(A)
X = 0.5*(X + A/X)

♦ Declared X, declared A with initial value
 ● only real above, but also integer, complex, logical, character
♦ X and A are changed during execution
♦ All the above are scalars
 ● arrays will be described later but they may also variables
Data Objects — Constants

A constant

- may be of any type and kind
- may be a scalar or an array
- may be a literal constant -- e.g. a digit string
- may be a named constant (called a parameter)
 - an identifier that is declared, has the PARAMETER attribute, is given a value in a specification statement, and never changes

real, parameter :: FUDGE = 1.998
Every type has literal constants
- real: 1.0, 1.04e–10
- integer: 1, –3
- complex: (1.0, –1.0)
- logical: .true., .false.

Every type has named constants:
- the programmer defines them
 - using the PARAMETER attribute or statement
 real, parameter :: PI = 3.14159...
Parameterized Types — What Are They?

- A means of specifying the various kinds of each of the intrinsic types
 - integers -- short, medium, and long
 - reals -- single and double precision, and extended
 - complex -- single, double, and extended precisions
 - logicals -- of size 1 bit, 1 byte, 1 word
 - characters -- 1 byte or multi-byte for large number of graphics (eg. Kanji)
The Problem — CPUs Are Not Created Equal — The Why?

- CPUs made by different vendors use different kinds of integers and reals
 - some have single and double precision reals
 - some have extended precision reals
 - Cray uses a different representation than Intel
 - IBM uses base 16 on some machines and base 2 on others

- How does a program access the different kinds of reals and integers?

- How does a programming language adapt to these different machines and changes in them?
Variations In Representations

Different ways of representing integers and reals since the advent of electronic machines

- different lengths: 32, 36, 48, 64, 80, and 128 bits for just a few
- different radices for the representation: 2, 3, 8, 10, 16
- different encodings:
 - integer: sign-magnitude, 1’s complement, 2’s complement
 - real: different sized exponents and fractions

What is common denominator (nearly)?

- power/sum form with fixed base approximates nearly all forms

Define models for integers and reals based on this common denominator
The Integer Model

\[i = s \sum_{k=0}^{q-1} d_k r^k \]

where:
- \(s \) is a sign (plus or minus 1) for \(i \)
- \(d_k \) are digits of \(i \) with \(0 \leq d_k < r \)
- \(q \) is the number of digits to hold \(i \) -- a CPU property
- \(r \) is the radix or base for the representation -- a CPU property
Fitting The Integer Model To A Machine

Given the model, find the parameters r and q so that the model “best” fits the machine:

- For example:
 - 32 bit word for integers
 - integers are represented in base 2 -- $r = 2$
 - 1 bit denotes the sign of the integer number, usually the first bit
 - the remaining 31 bits are for the digits of the integer -- $q = 31$

- This works with 2’s complement and sign/magnitude
 - 1’s complement has two zeros and so it is treated as if it had only 30 bits for the digits of the integer -- $q = 30$
An Picture Of Machine And Model Integers

Model: \(q = 31, r = 2 \)

Machine:

- **sign magnitude**
 - sign bit
 - 31 binary bits

- **2s complement**
 - sign indicator
 - 31 bits in 2s complement form
Parameterization For The Integers

- From the model, only r and q are machine dependent
- For a particular CPU, make a list of all of the different kinds of integers
- Number the different pattern with positive integers in any order.
 - For example, PC Salford Compiler (Nag From End)

 | size in bits: | 8 | 16 | 32 | |
|---|---|---|---|---|
 | base r: | 2 | 2 | 2 |
 | q: | 7 | 15 | 31 |
 | kind number: | 1 | 2 | 3 | (Salford) |
 | kind number: | 1 | 2 | 4 | (IBM) |
Real Model

Power/sum model with an exponent of fixed range. The nonzero real number x is:

$$ x = sb^e \sum_{k=1}^{p} f_k b^k $$

where:

- s is the sign (+1 or –1)
- f_k is the k-th digit in the mantissa with $0 \leq f_k < b$ with $f_1 > 0$
- b is the base or radix, and is an integer -- a CPU property
- p is the number of mantissa digits -- a CPU property
- e is an integer with $e_{min} \leq e \leq e_{max} \leq$
- e_{min} and e_{max} are specified integers -- CPU properties
Fitting The Real Model To A Machine

Given the model, find the parameters \(r, b, e_{\text{min}} \) and \(e_{\text{max}} \) so that the model “best” fits the machine:

- For example: Intel IEEE Floating Point P-754
 - 32 bit word for reals
 - reals are represented in base 2 -- \(r = 2 \)
 - 1 bit denotes the sign of the real number, the first bit
 - 8 bits for the exponent -- \(e_{\text{min}} = -125, e_{\text{max}} = 128 \)
 - 23 bits + 1 implied bit for the mantissa -- \(p = 24 \)
An Picture Of Machine And Model Reals

Model: $q = 31, r = 2, e_{\text{min}} = -125, e_{\text{max}} = 128$

<table>
<thead>
<tr>
<th>sign</th>
<th>signed exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>24 bits</td>
</tr>
</tbody>
</table>

Machine:

<table>
<thead>
<tr>
<th>sign</th>
<th>biased exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits implied bit</td>
<td>23 bits</td>
</tr>
<tr>
<td></td>
<td>2 reserved exponents</td>
<td></td>
</tr>
</tbody>
</table>
What Are Parameterized Types?

- A way to specify the different kinds of reals or integers that your compiler/machine supports
 - a CPU may have integers that are 8 bits long, 16 bits long, 32 bits long or even 64 bits long
 - a CPU may have reals of length 32 bits, 64 bits, 128 bit
- The parameterization provides static but readily adaptable way to specify and to modify with recompilation a particular specification
 - provides a portable, general, and flexible technique for specification of kinds of these intrinsic types
Topics To Cover

- How do we specify kinds in a program?
- How do we know which ones the compiler/machine supports?
- How do we write a program so that the program can adapt to whatever it provided?
- How do we transfer our programs to different machines -- portability
Specification Of Integer Kinds

The kinds of a type (say integer) are designated by positive integers, say 1, 2, 3

- In a declaration, the kind number appears in parenthesis after the type name
 - For example, for integer type specification statements:

 integer(1) I, J
 integer(2) :: K
 integer(3), dimension(10,10) :: P

- If no kind number is specified, a default kind number is provided by the processor; the Salford compiler selects 3; the IBM compiler selects 4.
Kind Numbers Are Potentially Non-portable

Because the numbering scheme for kinds is processor-dependent and the defaults are processor-dependent, kind number specifications are potentially non-portable.

There are two mechanisms to provide a portable specification:

- use of module (global-like) named constants for the kind numbers
- use of certain intrinsic functions to specify the kind numbers
Using Decimal Ranges

Consider classifying the kinds of integers by the decimal ranges of their representable values. Consider the Salford compiler:

<table>
<thead>
<tr>
<th>Kind</th>
<th>Size</th>
<th>q</th>
<th>r</th>
<th>huge</th>
<th>Dec.Range</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>2^7-1</td>
<td>$[-10^2, 10^2]$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>15</td>
<td>2</td>
<td>$2^{15}-1$</td>
<td>$[-10^4, 10^4]$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>31</td>
<td>2</td>
<td>$2^{31}-1$</td>
<td>$[-10^{10}, 10^{10}]$</td>
<td>10</td>
</tr>
</tbody>
</table>

RANGE = $\lceil \log_{10}(\text{huge}(x)) \rceil$
Certain Intrinsic Functions

For integers, there is an intrinsic function

\[\text{selected_int_kind(<integer_range>)} \]

where \(<\text{integer_range}>\) is an \textit{integer constant} representing the decimal range of the integers whose kind number is to be returned

- The \(<\text{integer_range}>\) is a minimum specification

For example, on the Salford compiler,

- \text{selected_int_kind}(2) returns 1
- \text{selected_int_kind}(4) returns 2
- \text{selected_int_kind}(8) returns 3
Using Decimal Precisions

Consider classifying the kinds of reals by the decimal precisions of their representable values. Consider the Salford compiler:

<table>
<thead>
<tr>
<th>Kind</th>
<th>Size</th>
<th>p</th>
<th>r</th>
<th>epsilon</th>
<th>Dec. Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>24</td>
<td>2</td>
<td>2⁻²³</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>53</td>
<td>2</td>
<td>2⁻⁵³</td>
<td>15</td>
</tr>
</tbody>
</table>

The decimal precision is:

- PRECISION = −log₁₀(epsilon(x))
Using Decimal Ranges For Reals

- Same definition as integers:
 - \(\text{RANGE} = \left\lfloor \log_{10}(\text{huge}(x)) \right\rfloor \)
For reals, there is an intrinsic function

\[
\text{selected_real_kind(<precision>,<range>)}
\]

where <precision> and <range> are integer constants representing the decimal precision and range of the reals whose kind number is to be returned

- The <precision> and <range> are minimum specifications

For example, on the Salford compiler,

- \text{selected_real_kind(5)} returns 1
- \text{selected_real_kind(10)} returns 2
- \text{selected_real_kind(5,100)} returns 3
Examples Of Specifications

Consider the following declarations:

```fortran
real( 1)  x  
! Specification of kind = 1
real(selected_real_kind(4))  y  
! Specification of kind = 1
! At least precision of 4
real(selected_real_kind(4,100))  
! Specification of kind = 2
! At least precision 4 and
! with at least range 100
```
Another intrinsic is available for integers and reals

- \(\text{kind}(x)\) returns the kind number of its argument
 - \(\text{kind}(0.0)\) is the kind number for default real kind
 - \(\text{kind}(0.0d0)\) is the kind number for double precision
 - \(\text{kind}(0)\) is the kind number for default integers
The language provides intrinsics that inquiry about these parameters, related values, and useful algorithmic “constants”

- Assume x is a declared object with type real(kind#)
 - radix(x) returns the radix used for x
 - precision(x) returns the decimal precision for x
 - range(x) returns the decimal range for x
 - digits(x) returns the base-r digits used for x
 - radix(x) returns the base r for x
 - minexponent returns the minimum exponent for x
 - maxexponent returns the maximum exponent for x
Inquiry Intrinsic Continued

- huge(x) returns the largest value x can have
- tiny(x) returns the smallest positive value x can have
- epsilon(x) returns the smallest number relative to 1 that changes 1
Using Module Constants

- The second way to handle the portability issue of processor-dependent constants is to use module constants:
 - Suppose WP is to be the kind number for working precision
 - Suppose SP is to be the kind number for single precision
 - Suppose DP is to be the kind number for double precision
 - Suppose DWP is to be the kind number for double working precision

- Then place the following declarations in a module
Module precision_module

! Kind parameters for reals

integer, parameter :: WP = selected_real_kind(10)
integer, parameter :: SP = kind(1.0)
integer, parameter :: DP = kind(1.0d0)
integer, parameter :: DWP = &
 selected_real_kind(2*precision(1.0_WP))

! Kind parameters for integers

integer, parameter :: IR = selected_int_kind(4)
integer, parameter :: IDR = kind(0)
end module precision_module
An Example: Newton’s Method

Consider writing a procedure to find the square root of a number \(a \) using Newton’s method

- The iteration technique is: \(x_{i+1} = 0.5(x_i + a/x_i) \)
- Start the iteration at \(a/2 \) -- there are better values
- Stop the iteration when \(|x_{i+1} - x_i| \leq \text{“small”}\)
- What is small?
 - Use the function epsilon(x) to determine small
 - It measures a small number relative to 1
 - It measures a unit change in the last digit of precision of the number
The SQRT Program — Specifications

Function my_sqrt(a)
 use precision_module
 implicit none
 real(WP) my_sqrt
 real(WP), intent(in) :: a
 intrinsic abs, epsilon
...

end function my_sqrt
The SQRT Program — Execution Part

if(x == 0.0_WP) then
 my_sqrt = 0.0_WP
else
 x_old = a; x_new = a/2.0_WP
 do while(abs(x_new-x_old) <= abs(x_old)*epsilon(x_old))
 x_old = x_new
 x_new = 0.5_WP*(x_old + x/x_old)
 end do
 my_sqrt = x_new
endif
A Better Starting Value

- The problem with this starting value is that when \(a \) is very large or very small in magnitude, the starting value \(a / 2 \) is too far away from the root so that the iteration is slow.

- We can use other manipulation intrinsic functions to break \(a \) into its exponent and fractional parts to get a better starting value.
Manipulation Intrinsics

- `exponent(x)` returns the exponent of x in terms of the model
- `fraction(x)` returns the fraction of x in terms of the model
- `set_exponent(x,i)` returns a number whose fraction is that of x and whose exponent is the value i
- `scale(x,i)` returns x scaled by $\text{radix}(x)^i$

A better value for the initial x_new is:

$$x_\text{new} = \text{set_exponent}(1.0_WP, \text{exponent}(a) / 2 + 1)$$

Use a linear least square approximation to the square root function over the interval $(0.5, 2.0)$
Generalize To Array Arguments

- Find the square root of an array, element-by-element
 - Use a masked array assignment using the
 - WHERE statement or construct
 - WHERE-ELSEWHERE block construct

- After defining such functions, they can be made generic
 - allows my_sqrt to work on arrays
 - the scalar code generalizes to array code in a simple way
The Euclidean Norm of a Vector

The Euclidean norm of a vector is:

$$ norm = \sqrt{\sum_{j=1}^{n} x_j^2} $$

This computation can overflow or underflow unnecessarily (that is, an intermediate result may get too large or small and yet the result is representable).

The solution is to use scaling and epsilon to make the computation more robust.
Algorithm

- Determine the largest value in magnitude
- Scale all values by this maximum (or an approximation to it to avoid rounding errors -- use the scale intrinsic function)
 - avoid n divisions as they are very expensive
- Compute the sum of squares for only those values that are larger than epsilon(x)
- Compute the norm (taking cognizance of the scaling)
Exercises

- Write a program to determine the supported kind numbers for integers, reals, logicals, complex, and character on IBM compiler using:
 - a program fails at compilation time when a specified kind value is not supported by the compiler

- Write a computer program to generate the tables on slides 22 and 24 for all supported kinds of integers and reals on the IBM compiler
 - On your first cut, print the values as integer or floating point values without using the formulas
 - On a second try, represent the formulas with parameters and print the values of the parameters
Exercises Continued

- **Write a test program for my_sqrt**
 - put my_sqrt in a module procedure called my_sqrts
 - test the square root program in the module

- **Write a version of my_sqrt for kind of SP**
 - place it in a module and call it my_sqrt_sp
 - test it with your test program

- **Write a version of my_sqrt for kind of DP**
 - place it in the same module and call it my_sqrt_dp
 - test it with your test program
In the example of the square root program, it was written for WP kind numbers. We want versions of square root for single and double precision arguments and we want to reference it by the single name `my_sqrt`.

How do we do it?
- Write 2 versions, one for SP kind and one for DP kind.
- Use an interface to specify the generic name `my_sqrt`.
- All references are to the generic name `my_sqrt`.
Module My_sqrts

Module my_sqrts
use precision_module
implicit none
interface my_sqrt
 module procedure my_sqrt_sp, my_sqrt_dp
end interface
CONTAINS
 function my_sqrt_sp(a)
 real(SP) my_sqrt_sp, a
 ...
 end function my_sqrt_sp
Module My_sqrts Continued

function my_sqrt_dp(a)
 real(SP) my_sqrt_dp, a
 ...
end function my_sqrt_dp
end module my_sqrts

The module procedures can now be referenced by the name my_sqrt

- The type of the argument determines which version of square root is called
 - my_sqrt(4.0) calls the single precision version
 - my_sqrt(4.0_d0) calls the double precision version
 - my_sqrt(9.0_WP) calls the appropriate version
Exercise

- Create a module with all supported precisions on the IBM compiler for the Euclidean norm program
- Write a test program for these norm functions and test the results
Mixed Mode Expressions

- The arithmetic and relational operators can combined operands of different types and different kinds
 - What are the kinds and types of the result?

Simplified rule:
 - order the types from simplest to most powerful
 - integer, then real, then complex
 - order the kinds within the arithmetic type by
 - increasing ranges for integers
 - increasing precisions for reals
 - increasing precisions for complex
Mixed Mode Expressions Continued

- The result of an operation is the most powerful type, precision, and range

- Examples (assume <operator> is an arithmetic operator):
 - integer <operator> real -- real (e.g. I + X)
 - integer <operator> complex -- complex (e.g. I*C)
 - SP real <operator> DP real -- DP real (e.g. X**D)
 - integer <rel_operator> real -- default logical with the comparison on DP reals (e.g. I <= X)
Specifying The Kind Of A Constant

- **Literal constants** have default kinds, defined by the compiler:
 - 1.0, 2.0e10 -- default real kind
 - 1.1d–5 -- default double precision kind
 - 1 -- default integer kind
 - (1.0,–1.0) -- default complex kind, same as default real kind
 - .false. -- default logical kind
 - “string” or ‘string’ -- default character kind
Literal Constants on Non-Default Kind

The kind values for literals of type other than character are specified with:

- after the constant after an underscore (_)
 - a literal integer constant, or
 - an integer named constant

1.1_WP -- real of kind value WP (the value of WP)
3.14159e0_DP -- real of kind value DP
2.7_4 -- real of kind value of 4
1_IP -- integer of kind value IP
.false._LP -- logical of kind value LP
(1.0_WP, 1.0_WP) -- complex of kind value WP
Non-Default Kind Values

- For characters, the kind specification is before the constant

 CK_'math_symbols' -- character of kind CK

- Named constants have the kind of their declaration

 real(WP), parameter :: tenth = 0.1_WP
 complex(DP), parameter :: j = (0.0_DP, 1.0_DP)
 character(10,MATH), parameter :: pi = MATH_‘π’
 logical(BIT), parameter :: T = .true._BIT

 where BIT and MATH are named integer constants whose values are logical and character kinds